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ABSTRACT 

In this work, analytical models like Timoshenko Beam Theory (TBT) and Euler-Bernoulli Beam Theory (EBT) are 

used for doing the free vibration analysis of a short cantilever beam for estimating the natural frequencies for the 

first four principal modes of an arbitrary length cantilever beam which satisfies the short cantilever beam criterion 

and also for estimating the fundamental natural frequencies for the variation of the length of the short cantilever 
beam. The cross-section of the beam is rectangular and the material used is Mild Steel. The obtained results from 

both the theories are compared with the simulation results using ANSYS R18.2 for validation. The results obtained 

from Timoshenko beam model are very nearer to those of simulation results using ANSYS R18.2 than those 

obtained from the Euler-Bernoulli beam model. Hence, Timoshenko beam model being the accurate one in 

analyzing the short beams for their free vibration analysis. 

 

Keywords: Short rectangular cantilever beam, Mild steel, Free vibration analysis, Timoshenko Beam Theory, and 

Euler-Bernoulli Beam Theory, ANSYS R18.2 

 
 

I. INTRODUCTION                   
 

All real structures behave dynamically when subjected to loads or displacements. There are two most popular 

theories for analyzing the beams which behave dynamically when subjected to loads or displacements, one is Euler-

Bernoulli beam theory and the other one is Timoshenko beam theory. The primary effects of beams subjected to 

load are transverse deflection due to pure bending and transverse inertia and the secondary effects are shear 

deformation and rotatory inertia of the cross-section of the beam. The governing equation which includes the 

primary effects only was derived from Euler-Bernoulli beam theory and that which include secondary effects along 

with primary effects was derived by Timoshenko [3]. The Euler-Bernoulli beam theory can give the natural 
frequencies of flexural vibrations of lower modes of longcantilever beams (L/D>7) quite accurately. For higher 

modes of longcantilever beams and for short cantilever beams (L/D<7) Timoshenko beam theory will give the 

accurate values for their dynamic analysis. 

 

The effects of shear deformation and rotatory inertia were first introduced in the vibrating beam equations derived 

by Timoshenko, S. P. in the year 1921. Timoshenko, in that paper, considered a value of 2/3 as shear coefficient, K 

for rectangular cross section [1]. 

 

The shear coefficient, K is introduced to allow for the fact that the shear stress is not uniform over the cross section. 

According to the commonly accepted definition, K is the ratio of the average shear strain on a section to the shear 

strain at the centroid. The coefficient Kis a dimensionless quantity, dependent on the shape of the cross section, 

which is considered because the shear stress and shear strain are not uniformly distributed over the cross section. 
The one-dimensional theory of beams can be improved by considering the transverse shear deformations and, in the 

case of vibrating beams, rotary inertia. The beam equations which consider these effects are generally called as 

Timoshenko's beam equations [1, 2] and they have received considerable attention in the literature. In these 

equations the effective transverse shear strain is calculated by dividing the product of the shear modulus and the 

shear coefficient, K. 
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A lot of research has been done on choosing a correct value for the shear coefficient, K. Timoshenko also used the 

values K = (6+12𝜗+6𝑣2) / (7+12 𝜗 +4𝑣2) for the circular and K = (5+5 𝜗)/ (6+5 𝜗) for the rectangular cross sections 
and are closest to the experimental values [2].  

 

Cowper, G. R., 1966, derived the formulae for the shear coefficients for various like circular, hollow circular, 
rectangular, elliptical, semi-circular, and thin-walled round tubular, square tubular, I-Section, Box section, Spar-

And-Web, T-Section cross sections for the case of static problems while deriving the equations of Timoshenko’s 

beam theory by integration of the equations of three-dimensional elasticity theory. The numerical values obtained 

from above formulae are agree with Timoshenko’s values when Poisson’s ratio value, 𝜗 is taken as zero [4]. 

 

Kaneko concluded that the values for K obtained from Timoshenko’s [2] equations are closest to experimental 

values [5].  

 

Hutchinson and Zilmer compared their three dimensional series solution and a plane stress solution for the 

completely free beam with the Timoshenko beam theory for rectangular cross section. The plane stress solution is in 

good agreement with Timoshenko beam theory using Timoshenko’s shear coefficient, K [6]. 
 

However, in this work, the value obtained from the equation, K = (5+5 𝜗)/ (6+5 𝜗) [2] that was suggested by 

Timoshenko, S. P. for shear coefficient for rectangular cross section is used. 

 

II. DIFFERENTIAL EQUATIONS  FOR FREE TRANSVERSE VIBRATIONS OF A BEAM 
 

Here for free transverse vibrational analysis a cantilever beam is considered. 

 
Fig 1. Cantilever Beam 

 

A. Differential equations for free transverse vibrations of a uniform timoshenko beam [8] 

In Timoshenko beam theory the effects of shear deformation (SD) and rotary inertia (RI) are considered for the 

flexural vibrations of a uniform short beam. The loading condition and free body diagram of a cantilever beam 

according to Timoshenko Beam Theory is shown in the below Fig 2. 

 
Fig 2.  A Transversely Vibrating Timoshenko beam 

a) External loads, p(x) and 𝒎𝒃(x, t), in the coordinate system oxyz; 

b) Free - body diagram for the beam segment dx. 
 

For free transverse vibration analysis of a beam, we can neglect external force per unit length, p(x, t) and external 

bending moment per unit length, 𝒎𝒃(x, t). 
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For the free transverse vibration of a uniform Timoshenko beam, the coupled equations for the total deflection, y(x, 

t) and the rotation due to bending moment, 𝜓 𝑥, 𝑡  are given by 

𝜌𝐴
𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
− 𝐾𝐺𝐴  

𝜕2𝑦 𝑥, 𝑡 

𝜕𝑥2
−

𝜕𝜓 𝑥, 𝑡 

𝜕𝑥
 = 0                                      (1𝑎) 

𝐸𝐼𝑧
𝜕2𝜓(𝑥,𝑡)

𝜕𝑥 2 + 𝐾𝐺𝐴  
𝜕𝑦 (𝑥,𝑡)

𝜕𝑥
− 𝜓(𝑥, 𝑡) − 𝜌𝐼𝑧

𝜕2𝜓 𝑥,𝑡 

𝜕𝑡 2 = 0         (1𝑏) 

 

Where, E, Iz, ,  A, K, G aremodulus of elasticity, second moment of area, mass density, cross-sectional area, shear 

coefficient and shear modulus of the beam respectively. And also here K, the shearcoefficient is considered to 

account for the variation of shear strain across the cross-section of the beam. 

Eliminating 𝜓(𝑥, 𝑡) or y(x, t) from the equations (1a) and (1b) we respectively get two differential equations in y(x, 

t) and 𝜓(𝑥, 𝑡) as follows: 

𝐸𝐼𝑧
𝜕4𝑦(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
− 𝜌𝐼𝑧  1 +

𝐸

𝐾𝐺
 
𝜕4𝑦 𝑥, 𝑡 

𝜕𝑥2𝜕𝑡2
+

𝜌2𝐼𝑧𝜕4𝑦 𝑥, 𝑡 

𝐾𝐺𝜕𝑡4
= 0        (2𝑎) 

 𝐸𝐼𝑧
𝜕4𝜓(𝑥,𝑡)

𝜕𝑥 4 + 𝜌𝐴
𝜕2𝜓(𝑥,𝑡)

𝜕𝑡 2 − 𝜌𝐼𝑧  1 +
𝐸

𝐾𝐺
 

𝜕4𝜓 𝑥,𝑡 

𝜕𝑥 2𝜕𝑡2 +
𝜌2𝐼𝑧𝜕4𝜓 𝑥,𝑡 

𝐾𝐺𝜕𝑡 4 = 0  (2b) 

 

The slope of the Timoshenko beam is given by the following equation: 
𝜕𝑦 (𝑥,𝑡)

𝜕𝑥
= 𝜓 𝑥, 𝑡 + 𝛾(𝑥, 𝑡)      (3a) 

 

Where, 

𝜓 𝑥, 𝑡  Is the rotational angle due to the bending moment and 𝛾(𝑥, 𝑡) is the shear strain due to the shearing force. 

From the above equation one can has  

𝛾 𝑥, 𝑡 =
𝜕𝑦 (𝑥,𝑡)

𝜕𝑥
− 𝜓 𝑥, 𝑡      (3b) 

 

For the case of free vibrations, the translational and rotational displacement functions respectively will be as 
follows: 

𝑦 𝑥, 𝑡 = 𝑌 𝑥 𝑒𝑖𝜔𝑡  4𝑎  
𝜓 𝑥, 𝑡 = 𝝍 𝑥 𝑒𝑖𝜔𝑡                                                                   (4𝑏) 

 

Where, 

Y(x) and 𝝍 (x) are the amplitudes of y(x, t) and 𝜓 𝑥, 𝑡  respectively, and 𝜔 is the natural frequency in rad/sec, t is the 

time in seconds and i= −1. 
 

Now, the solutions for the equations 2(a) and 2(b) after substituting the equations (4a) and (4b) and eliminating the 

common term 𝑒𝑖𝜔𝑡 will be as follows: 

𝑌 𝑥 = 𝐴 𝑐𝑜𝑠ℎ𝛿𝑥 + 𝐵 𝑠𝑖𝑛ℎ𝛿𝑥 + 𝐶 𝑐𝑜𝑠𝜀𝑥 + 𝐷 𝑠𝑖𝑛𝜀𝑥          (5𝑎) 
 

Where, the constants 𝐴 , 𝐵 , 𝐶 , 𝑎𝑛𝑑 𝐷  are for the translational displacement function Y(x), and 

𝝍 𝑥 =  𝐴‟𝑠𝑖𝑛𝛿𝑥 + 𝐵‟𝑐𝑜𝑠𝛿𝑥 + 𝐶‟𝑠𝑖𝑛𝜀𝑥 + 𝐷‟𝑐𝑜𝑠𝜀𝑥          (5b) 

Where, the constants A‟, B‟, C‟, and D‟ are for the rotational displacement function 𝝍(x). 

 

The equations Y(x), 𝝍(x) represent the translational and rotational mode shapes of the uniform Timoshenko beam 

respectively. 

Herein, equations (5a, b), 

𝛿 =  
1

2
 −𝛼 +  𝛼2 + 4𝛽4  
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𝜀 =  
1

2
 𝛼 +  𝛼2 + 4𝛽4                (6a, b) 

Where, 

𝛼 =
𝜌𝐼𝑧  1 +

𝐸
𝐾𝐺

 𝜔2

𝐸𝐼𝑧
 

                             𝛽4 =
𝜌𝐴𝜔 2−

𝜌 2𝐼𝑧

𝐾𝐺
𝜔4

𝐸𝐼𝑧
(7a, b) 

A‟=a𝐵 , B‟=a𝐴 , C‟=-b𝐷  and D‟=-b𝐶 (8a, b) 
Where, 

𝑎 =
𝐾𝐺𝐴𝛿

(−𝐸𝐼𝑧𝛿2−𝜌𝐼𝑧𝜔 2+𝐾𝐺𝐴)
, 

𝑏 =
𝐾𝐺𝐴𝜀

(−𝐸𝐼𝑧𝜀2−𝜌𝐼𝑧𝜔 2+𝐾𝐺𝐴)
(9a, b) 

Also, on substituting equations (4a, b) and (x, t) = Γ(x)𝑒𝑖𝜔𝑡  into equations (3b) and then inserting equations (5a, b) 

into the resulting expression, one obtains the shear deformations displacement function as follows: 

𝛤 𝑥 = 𝑌‟ 𝑥 − 𝜓 𝑥 = 𝑐𝐴𝑠𝑖𝑛ℎ𝛿𝑥 + 𝑐𝐵𝑐𝑜𝑠ℎ𝛿𝑥– 𝑑𝐶𝑠𝑖𝑛𝜀𝑥 + 𝑑𝐷𝑐𝑜𝑠𝜀𝑥    

 (10) 
 

Where, 

𝑐 = 𝛿 − 𝑎,        𝑑 = 𝜀 − 𝑏(11a, b) 

We can determine the integrating constants 𝐴 , 𝐵 , 𝐶 , 𝑎𝑛𝑑 𝐷  by using boundary conditions of the beam. 
For free vibrations, we have 

𝑄(𝑥, 𝑡)  =  𝑄(𝑥)𝑒𝑖𝜔𝑡 , 

          𝑀 𝑥, 𝑡 =  𝑀 𝑥 𝑒𝑖𝜔𝑡 , 𝑎𝑛𝑑  
                             𝛾 𝑥, 𝑡 = Γ(𝑥)𝑒𝑖𝜔𝑡 (12a, b, c) 

 

Where, 

Q(x), M(x), and Γ(x) represent the amplitudes of shear force, Q(x, t), bending moment, M(x, t), and shear strain, 𝛾(x, 

t) respectively. And also we have 

𝑄(𝑥)  =  𝐾𝐺𝐴 Γ(𝑥)   (13a) 

𝑀(𝑥)  =  𝐸𝐼𝑧 𝝍‟(𝑥)   (13b) 

 

B. Boundary conditions for calculatingintegrating constants𝐀 , 𝐁 , 𝐂 , 𝐚𝐧𝐝 𝐃 : 
For Free End: 

𝑀 𝑥 = 𝐸𝐼𝑧 𝝍‟ 𝑥 = 0 𝑎𝑛𝑑 𝑄 𝑥 = 𝐾𝐺𝐴 𝛤 𝑥 = 0       14𝑎, 𝑏  
 

For Clamped End: 

𝑌 𝑥 =  0 𝑎𝑛𝑑 𝝍 (𝑥)  =  0                                                     (15𝑎, 𝑏) 

For Hinged End: 

𝑌 𝑥 =  0 𝑎𝑛𝑑 𝑀 𝑥 = 𝐸𝐼𝑧 𝝍‟(𝑥) = 0  (16a, b) 

From the equations (15a, b) and (14a, b) the boundary conditions for C-F beam are respectively as follows: 

𝑌  0 =  0, 𝝍 (0)  =  0                                                                (17𝑎, 𝑏) 

𝝍‟ (𝐿)  =  0, 𝛤 (𝐿)  =  0                                                              (18𝑎, 𝑏) 
From the equations (5a), (5b) and (10), and (17a, b), (18a, b), we have 

𝑌 0 = 𝐴 + 𝐶 = 0                                                                             19a  

𝝍 0 = 𝑎𝐵  +  𝑏𝐷 = 0                                                                     19𝑏  

𝝍′ 𝐿 = 𝑎𝛿𝐴 𝑐𝑜𝑠ℎ 𝛿𝐿 + 𝑎𝛿𝐵 𝑠𝑖𝑛ℎ𝛿𝐿 − 𝑏𝜀𝐶 𝑐𝑜𝑠𝜀𝐿 − 𝑏𝜀𝐷 𝑠𝑖𝑛 𝜀𝐿 = 0 (19c) 

𝛤 (𝐿)  = 𝑐𝐴 𝑠𝑖𝑛ℎ 𝛿𝐿 + 𝑐𝐵  𝑐𝑜𝑠ℎ 𝛿𝐿 – 𝑑𝐶  𝑠𝑖𝑛 𝜀𝐿 + 𝑑𝐷 𝑐𝑜𝑠 𝜀𝐿 = 0  (19d) 
For non-trivial solution of equations (19a)-(19d) requires that 
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∆ 𝜔 =  

1                   0
0                  𝑎

1                  0
0                  𝑏

𝑎𝛿𝑐𝑜𝑠ℎ 𝛿𝐿 𝑎𝛿 𝑠𝑖𝑛ℎ 𝛿𝐿
𝑐 sinh 𝛿𝐿 𝑐 cosh 𝛿𝐿

−𝑏𝜀 𝑐𝑜𝑠𝜀𝐿 −𝑏𝜀 𝑠𝑖𝑛 𝜀𝐿

– 𝑑 sin 𝜀𝐿 𝑑 cos 𝜀𝐿

 = 0  (20) 

and is the frequency equation of the C-F uniform Timoshenko beam which is a transcend equation. 

 

Now, from equations (6a, b), (7a, b), (9a, b), and (11a, b), the equation (20) is a function of  𝜔, and the any one of 

the numerical methods (such as half-interval method) can be used to calculate the natural frequencies 𝜔𝑟 (r=1, 2, 3 

… represents mode number) [10].  

 

C. Differential equations for free transverse vibration of a uniform euler-bernoulli beam [8] 

For a uniform free transverse vibration of slender beam EBT neglect the external force per unit length p(x, t), and 

external bending moment per unit length, 𝑚𝑏 (x, t). 

 
 

Fig 2. A Transversely Vibrating Euler-Bernoulli beam 

a) The external force, p(x) and the external moment,𝒎𝒃(x, t), in the coordinate system oxyz; 

b) The free-body diagram for the differential beam segment dx. 

 

According to Euler-Bernoulli beam theory which neglects the shear deformation (SD) and rotary inertia (RI), the 

differential equations for free transverse vibration are: 

𝑄(𝑥, 𝑡)  =  −𝐸𝐼𝑧
𝜕3𝑦(𝑥, 𝑡)

𝜕𝑥3
                                                      (21) 

𝐸𝐼𝑧
𝜕4𝑦(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
= 0                                                        (22) 

 

Where, Q(x, t) is the shear force and E, Iz,𝜌, and A are the young’s modulus, second moment of the area of the beam 
cross section, mass density, and cross-sectional area of the uniform beam respectively. Consider the displacement 

function as: 

𝑦(𝑥, 𝑡) = 𝑌 (𝑥)𝑒𝑖𝜔𝑡                                                                        (23) 

 

Where, 𝑌(x) is the amplitude of 𝑦(x, t), 𝜔 is the natural frequency of the beam, t is the time, and i= −1. 

From equations (22) and (23), we will get 

𝑌‟‟ „‟ 𝑥 − 𝛽4𝑌 𝑥 =  0                                                                24  

 

or 

𝜔 = (𝛽𝐿)2 
𝐸𝐼𝑍

 𝜌𝐴𝐿4 
                                                                          (25) 
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Now, the solution of the equation (24) will be in the form:  

𝑌(𝑥)  = 𝐵1𝑒
𝛽𝑥 + 𝐵2𝑒−𝛽𝑥 + 𝐵3𝑒

𝑖𝛽𝑥 + 𝐵4𝑒
−𝑖𝛽𝑥                      (26) 

 

Where,  

𝐵1 , 𝐵2 , 𝐵3 , 𝑎𝑛𝑑 𝐵4  are constants of integration. 

 And since,  

𝑒±𝛽𝑥 = 𝑐𝑜𝑠ℎ𝛽𝑥 ± 𝑠𝑖𝑛ℎ𝛽𝑥, 𝑒±𝑖𝛽𝑥 = 𝑐𝑜𝑠ℎ𝛽𝑥 ± 𝑖 𝑠𝑖𝑛ℎ𝛽             (27) 
Equation (26) can also be expressed as: 

𝑌 𝑥 = 𝐶1𝑐𝑜𝑠ℎ𝛽𝑥 + 𝐶2𝑠𝑖𝑛ℎ𝛽𝑥 + 𝐶3𝑐𝑜𝑠𝛽𝑥 + 𝐶4𝑠𝑖𝑛𝛽𝑥                             (28) 

 

Which is the natural mode shape of the uniform Euler-Bernoulli beam with the integration constants C1-C4 which 

can be determined from boundary conditions of the beam. 

 

D. Boundary conditions for calculating integrating constants c1, c2 ,  c3, c4 

Once again recalling 

𝜓 𝑥, 𝑡 =
𝜕𝑦 (𝑥 ,𝑡)

𝜕𝑥
                                                                (29) 

is the bending slope, 

𝝍 (𝒙)  =  𝑌‟(𝑥)                                                                       (30) 

is the amplitude of  𝜓 𝑥, 𝑡 ,  

𝑀 (𝑥, 𝑡) =  𝐸𝐼𝑧𝑌′′(𝑥)                                                            (31) 
is the amplitude of bending moment, and 

𝑄 (𝑥)  =  −𝐸𝐼𝑧𝑌‟‟‟(𝑥)                                                          (32) 

is the amplitude of Q(x, t),  
Now, boundary conditions for determining the integrating constants C1-C4 are similar to as expressed in equations 

(14a, b), 15(a, b), and (16a, b) for free, clamped, and hinged ends respectively and are as follows: 

At the clamped end (x=0): 

𝑌 (0)  =  0,   𝑌‟(0)  = 0                                             (33𝑎, 𝑏) 

At the free end (x=L): 

𝑌‟‟(𝐿)  = 0, 𝑌‟‟‟(𝐿) = 0                                                  (34𝑎, 𝑏) 

Now, from the equations (28), (33a, b) we will get 

𝐶3 = −𝐶1, 𝐶4 = −𝐶2                                                    (35𝑎, 𝑏) 

On substituting the equations (35a, b) into equation (28) we will get 

𝑌 = 𝐶1  𝑐𝑜𝑠ℎ𝛽𝑥 − 𝑐𝑜𝑠𝛽𝑥 + 𝐶2 𝑠𝑖𝑛ℎ𝛽𝑥 − 𝑠𝑖𝑛𝛽𝑥               (36) 

Now from the equations (36a) and (34a, b), we will obtain 

𝐶1  𝑐𝑜𝑠ℎ𝛽𝐿 + 𝑐𝑜𝑠𝛽𝐿 +  𝐶2 𝑠𝑖𝑛ℎ𝛽𝐿 + 𝑠𝑖𝑛𝛽𝐿 = 0           (37𝑎) 

𝐶1 (𝑠𝑖𝑛ℎ𝛽𝐿 − 𝑠𝑖𝑛𝛽𝐿)  +  𝐶2 (𝑐𝑜𝑠ℎ𝛽𝐿 + 𝑐𝑜𝑠𝛽𝐿) = 0          (37𝑏) 

For the non-trivial solution of the simultaneous equations (37a, b), it requires that 

∆ 𝜔 =  
cosh𝛽L + cosβ𝐿 sinℎ𝛽𝐿 + sinβ𝐿
𝑠𝑖𝑛ℎ𝛽𝐿 − 𝑠𝑖𝑛𝛽𝐿 𝑐𝑜𝑠ℎ𝛽𝐿 + 𝑐𝑜𝑠𝛽𝐿

 = 0              (38) 

or 

coshβLcos𝛽𝐿 = −1(39) 

or 

cos𝛽𝐿 = −
1

cosh 𝛽𝐿
                                                 (40) 

The above equation (40) is called the frequency of the Euler-Bernoulli beam and for the solution of this equation 

(40) we can use a numerical method like Half- Interval method [10]. 
 

III. RESULTS AND DISCUSIONS 
 

For validating the fundamental natural frequencies obtained from EBT and TBT we considered a numerical example 

of a cantilever beam with the variation of lengths as 137.5 mm, 112.5 mm, 87.5 mm, and 62.5 mm and the cross-
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sectional dimensions as 24.75 mm width and 10 mm thickness. The material used is mild steel. The element selected 

for the beam definition is BEAM 2D 188 in ANSYS R18.2 [9]. 

 
Table 1. Mechanical Properties of Mild Steel 

S. No. Mechanical Property Value 

1 Young’s Modulus 1.96 × 𝟏𝟎𝟏𝟏Pa 

2 Density 7850 Kg/𝒎𝟑 

3 Poison’s Ratio 0.3 

 

Ansys R18.2 results[9]: 

The following figures named  as Fig 4, 5, 6, and 7 are the fundamental mode shapes and the corresponding 

fundamental natural frequencies of mild steel cantilever beams of various effective lengths 137.5 mm, 112.5 mm, 
87.5 mm, and 62.5 mm respectively obtained in ANSYS R18.2. 

 

 
Fig 4. For Length, L=137.5 mm 

 

 
Fig 5. For Length, L=112.5 mm 

 

 
Fig 6. For Length, L=87.5 
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Fig 7. For Length, L=62.5 mm 

 
Table 2. comparison of ansys r18.2 results with the results of ebt and tbt for different lengths of mild steel cantilever beam 

S. No. 
ANSYS R18.2 

Results 

EBT 

Results 

TBT 

Results 
% variation of 

EBT values 

with those of 

ANSYS R18.2 

% variation of TBT 

values for K=0.8667 

with those of ANSYS 

R18.2 

 

K=0.8667 

L, mm 𝝎𝒏, Hz 𝝎𝒏, Hz 𝝎𝒏, Hz 

137.5 425.17 426.95 425.18 0.42 0.00235 

112.5 634.03 637.78 633.9 0.59 -0.0205 

87.5 1043.91 1054.3 1043.8 0.99 -0.0105 

62.5 2026.6 2066.4 2026.8 1.96 0.0099 

 

From Table 2, we can observe that the fundamental natural frequency values of a cantilever beam will be increased 

as the length of the cantilever beam is decreased. We can also observe that the fundamental natural frequency values 

obtained for identical cantilever beams in length and cross-section (rectangular) from Timoshenko Beam Theory 

(TBT) are nearer to the ANSYS R18.2 values than those obtained from Euler-Bernoulli Theory (EBT). The 

percentage variation of the fundamental natural frequency value for the decrease in length of the cantilever beam for 

their identical cross-section (rectangular) obtained from the Euler-Bernoulli Theory (EBT) is increased more than 

that from Timoshenko Beam Theory (TBT) when compared with the values obtained from ANSYS R18.2 

 

 
Graph 1. Percentage variation of fundamental natural frequency values for different lengths of cantilever beam using EBT 

and TBT with those obtained in ANSYS R18.2. 

 

The following figures named as Fig 8, 9, 10, 11 respectively show the first four principal mode shapes and the 

corresponding natural frequencies of the mild steel cantilever beam of length, L=137.5 mm in ANSYS R18.2.  
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Fig 8. Principal Mode 1 

 

 
Fig. 9 Principal Mode 2 

 

 
Fig. 10 Principal Mode 3 
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Fig 11. Principal Mode  4 

 
Table 3. Comparison of AnsysR18.2 Results with the Results of EBT and TBT for Mild Steel Cantilever Beam of Length, 

L=137.5 mm: 

Mode 

No. 

ANSYS R18.2 

𝝎𝒏, Hz 

 

EBT 

𝝎𝒏, Hz 

TBT 

𝝎𝒏, Hz 
% variation of EBT 

values with ANSYS 

R18.2 

% variation of 

TBT values for 

K=0.8667 with 

ANSYS R18.2 
K=0.8667 

1 425.17 426.95 425.18 0.042 0.00235 

2 2601.5 2675.55 2602.5 2.8 0.0384 

3 7029.2 7.49E+03 7034 6.56 0.0683 

4 13143 14681 13,156.70 11.7 0.1 

 

From Table 3, we can observe that the percentage variation of EBT values with ANSYS R18.2 values for the natural 
frequency of the first four modes for the rectangular cantilever beam of length 137.5 mm is from 0.042% to 11.7%. 

And also the percentage variation of TBT values with ANSYS R18.2 values for the natural frequencies of the first 

four modes of a cantilever beam of length 137.5 mm and identical rectangular cross-section is from 0.00235% to 

0.1% for the shear coefficient value, K=0.8667. The percentage variation of TBT values with ANSYS R18.2 values 

for the natural frequencies for the first four modes of a cantilever beam of length 137.5 mm and identical cross-

section is from -0.47% to 0.17% for the shear coefficient value, K=0.8667. The values obtained for TBT are nearer 

to the ANSYSR18.2 values than those for EBT values for short cantilever beam. The same can be observed in the 

following Graph 2 

 

 
Graph 2. Percentage variation of EBT, TBT Frequency, 𝝎𝒏, ,Hz values with those from ANSYS R18.2 for the first 

four Modes 
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IV. CONCLUSIONS 
 

1. We can observe that the fundamental natural frequency values of a cantilever beam will be increased as the 

length of the cantilever beam is reduced keeping the cross-section constant. And also we can observe that 

the fundamental natural frequency values for different lengths of the identical rectangular cross-section 

cantilever beam from Timoshenko Beam Theory (TBT) are nearer to the ANSYS R18.2 values than those 

obtained from Euler-Bernoulli Theory (EBT). 

2. The percentage variation of the fundamental natural frequencies for the decrease of the length  

of the cantilever beam obtained from the Euler-Bernoulli Theory (EBT) are more than those from the 

Timoshenko Beam Theory (TBT) when compared with the values obtained from ANSYS R18.2.  

3. We can also observe that the variation of EBT and TBT values of fundamental natural frequency with those 

of ANSYS R18.2 for a fixed length of cantilever beam and identical cross-section is increased as the mode 

number is increased.  
4. The fundamental natural frequencies obtained from Timoshenko Beam Theory (TBT) are nearer to the 

ANSYS R18.2 values than those values obtained from Euler-Bernoulli Theory (EBT). 

5. Hence, we can say that for the analysis of free transverse vibrations of short cantilever beams either for 

lower or higher modes Timoshenko Beam Theory (TBT) is the best estimate than Euler-Bernoulli Beam 

Theory (EBT). 
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